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Section 1 — You May Name 

 
Algebra begins with permission to name. 

This is not trivial. 
Nothing happens before this. 

To name is to designate a symbol and agree that it will stand 
in for something. The symbol does not need to resemble the 
thing it stands for. It does not need to explain it. It does not 
need to resolve it. 

It only needs to hold a place. 

When you write a letter—x, y, a, n—you are not assigning a 
value. You are reserving space. Naming creates a placeholder 
where something may later appear, or may remain absent. 

This is the first act of algebra, and it is reversible only by 
refusal. 

What Naming Allows 

When you name, you gain several capabilities at once: 

• You may refer to something without specifying it. 
• You may speak about relationships before quantities. 
• You may delay commitment. 

Naming allows algebra to proceed without knowing where it 
will end. 

For example, when you write: 

Let x represent a number. 



You have not said what the number is. You have not 
restricted it. You have not solved anything. You have simply 
made it possible to continue. 

This is sufficient. 

Naming Is Not Definition 

Naming is often confused with defining. They are not the 
same. 

A definition attempts to fix meaning. 
A name merely points. 

In algebra, names are intentionally thin. They carry no 
personality, no history, no narrative burden. A symbol should 
do as little as possible while remaining usable. 

This is why algebra prefers letters. 
Not because letters are elegant, but because they are light. 

A good name does not distract. 

What Naming Does Not Allow 

Naming does not grant the following permissions: 

• It does not assign a value. 
• It does not guarantee existence. 
• It does not imply equality. 
• It does not authorize manipulation by itself. 

If x is named, nothing may yet be done to x except referring 
to it. 



Attempts to operate on a symbol before it is properly related 
to others often result in confusion. This is not algebra 
resisting you; it is algebra enforcing sequence. 

You may name. 
Then you must wait. 

Common Misuse 

The most common misuse of naming is premature 
interpretation. 

Readers often look at a symbol and immediately ask: 
“What is it?” 
“What does it mean?” 
“What number is it really?” 

These questions are out of order. 

Algebra is not offended by curiosity, but it is strict about 
timing. Meaning arrives later, through relationship. 

Another common error is overnaming—introducing multiple 
symbols where one would suffice. This creates unnecessary 
bookkeeping and obscures structure. 

Name sparingly. 
You can always name again. 

Minimal Example 

Consider the statement: 

Let x be a number. 

At this stage, nothing further can be done. This is correct. 



Now consider: 

Let x be a number such that x + 3 = 7. 

The important move here is still the first one. The equation 
comes later. Without naming x, there is no subject for the 
equation to act upon. 

Naming does not solve the problem. 
It makes solving possible. 

Why Naming Comes First 

Every algebraic system, no matter how advanced, begins by 
reserving symbolic space. 

Groups, rings, fields, matrices, functions—each starts by 
naming elements before describing how they interact. 

This is not tradition. 
It is necessity. 

You cannot relate what you cannot refer to. 
You cannot transform what you have not marked. 

Naming is the minimum act that makes structure visible. 

A Note on Neutrality 

Algebraic names are neutral by design. 

They are not variables because they vary. 
They vary because they are variables. 

The symbol does not change itself. What changes is what is 
permitted to stand in its place later. 



This neutrality is what allows algebra to move across 
domains without friction. 

The name remains a name. 

Summary of This Permission 

You may name. 

This means: 
• you may introduce a symbol 
• you may refer to it consistently 
• you may delay commitment 

You may not yet: 
• assign value 
• manipulate freely 
• conclude anything 

Naming opens the door. 
It does not move you through the room. 

That comes next. 



Section 2 — You May Equate 

 
After naming comes permission to equate. 

Equating is the act of declaring that two expressions are the 
same. When you write an equals sign, you are asserting 
identity within the system. 

This is a strong move. Algebra does not allow it casually. 

What Equating Allows 

When you equate two expressions, you gain the ability to 
treat them interchangeably. 

If 
a = b 

then anywhere a appears, b may appear in its place. 

This is the foundation of all algebraic motion. Without 
equality, symbols remain isolated. With equality, structure 
forms. 

Equating turns names into participants. 

The Equals Sign 

The equals sign means “is the same as.” 

In algebra, 
3 + 4 = 7 
is a statement of equivalence. The system records that the 
two sides balance. 

What May Be Equated 



You may equate: 
• a symbol and a value 
• two expressions 
• two results of different operations 

For example: 
x + 3 = 7 

Both sides belong to the same algebraic space. 

Conditions on Equality 

Equality requires that both sides belong to the same system. 

Equating incompatible objects or unintroduced symbols 
produces statements that cannot be used. Such statements fail 
quietly. 

Common Misuse 

A frequent error is treating equality as directional. 

Both sides carry equal weight. 

Another error is stacking equalities without checking 
consistency. Carelessness here creates contradictions later. 

Minimal Example 

x = 4 

x + 3 = 7 

In both cases, a relationship has been set. Nothing has been 
solved yet. 

Why Equating Comes Second 



Naming creates a subject. 
Equating creates a relationship. 

Once equality exists, replacement becomes possible. 

Summary of This Permission 

You may equate. 

This means: 
• you may declare two expressions the same 
• you may treat either side as interchangeable 
• you may build chains of relationship 

Equality establishes balance. 
Movement comes next. 



Section 3 — You May Replace 

 
Replacement is the working motion of algebra. 

Once two expressions have been equated, either may stand in 
for the other. This is what equality is for. 

If something is the same, it may be used as the same. 

What Replacement Allows 

Replacement allows movement without change. 

If 
a = b 

then anywhere a appears, b may appear instead. The reverse 
is also true. 

Replacement lets algebra travel through an expression 
without altering its balance. 

Replacement Is Local 

Replacement does not require rewriting everything at once. 

You may replace: 
• a single symbol 
• a part of an expression 
• one side of an equation 

You choose the location. 

For example, if: 
x = 4 



and you are working with: 
x + 3 

you may replace x with 4 in that expression alone. 

The rest of the system remains untouched. 

Why Replacement Matters 

Without replacement, equality would remain inert. 

Replacement allows separate statements to interact. It is how 
constraints propagate. 

This is where algebra begins to feel active. 

Conditions on Replacement 

Replacement must preserve equality. 

You may only replace what has been equated with what it has 
been equated to. 

Casual substitution breaks the chain. 

Common Misuse 

The most common error is replacing too much. 

Replacing everywhere at once often produces expressions 
that are harder to work with. 

Replacement is a permission, not an obligation. 

Another error is replacing before equality has been 
established. 



Replacement always follows equating. 

Minimal Example 

x + 3 = 7 

You may replace x + 3 with 7 in any larger expression where 
it appears. 

Or you may replace x with 4 after that equality has been 
established. 

Each move is small. 
Each move is reversible. 

Replacement and Solving 

Solving is a sequence of replacements guided by undo 
operations. 

You replace until nothing remains to be replaced. 

Summary of This Permission 

You may replace. 

This means: 
• you may substitute equals for equals 
• you may move information through expressions 
• you may proceed without changing balance 

Replacement is the engine. 



Section 4 — You May Combine 

 
Once symbols can be named, equated, and replaced, they 
may be combined. 

Combination is permission to place expressions together 
according to agreed operations. In elementary algebra these 
operations are familiar. Their familiarity is not the point. 

The permission is. 

What Combining Allows 

Combining allows multiple expressions to be treated as a 
single expression. 

When you write: 
a + b 

you are not solving anything. You are forming a compound 
object that can be acted on later. 

Combination creates structure without resolution. 

Operations as Agreements 

An operation is an agreement about how symbols may be 
joined. 

The symbol + means combine under the rules of addition. 
Those rules are assumed to be stable and shared. 

The same is true for multiplication, division, and 
exponentiation. 



Combining Before Knowing 

You are allowed to combine symbols even when their values 
are unknown. 

For example: 
x + 3 

This allows work to proceed ahead of knowledge. 

Order and Grouping 

When combining, grouping matters. 

Parentheses indicate how combination is structured. 

For example: 
(a + b) + c 
a + (b + c) 

Under addition these are equivalent. Under other operations 
they may not be. 

Combination forms the object. Rearrangement comes later. 

Common Misuse 

A common error is combining without purpose. 

Expressions grow longer without becoming clearer. 

Another error is mixing operations without attending to their 
rules. 

Algebra allows combination. 
It does not excuse carelessness. 



Minimal Example 

Suppose: 
x = 4 

You may form: 
x + 3 

You may then combine further: 
(x + 3) · 2 

No solution has occurred. Structure has been built. 

Combination and Structure 

As algebra advances, combinations become more abstract. 

You combine: 
• numbers 
• symbols 
• functions 
• vectors 
• entire expressions 

The permission remains the same. 

Summary of This Permission 

You may combine. 

This means: 
• you may join expressions using agreed operations 
• you may build compound structures 
• you may proceed without resolving values 

Combination builds form. 





Section 5 — You May Rearrange (when allowed) 

 
Rearrangement is conditional permission. 

You may change the order or grouping of an expression only 
when the rules governing that expression allow it. 

What Rearrangement Allows 

When permitted, rearrangement allows you to change the 
appearance of an expression without changing its value. 

For example, under addition: 
a + b = b + a 

Rearrangement improves access. 

When Rearrangement Is Allowed 

Rearrangement depends on the operation in use. 

Some operations permit changing order or grouping. Others 
permit neither. 

Addition and multiplication often allow both. Subtraction 
and division generally do not. 

Rearrangement is never assumed. 
It is verified. 

Order and Grouping 

There are two kinds of rearrangement: 
• reordering terms 
• regrouping terms 



Reordering requires commutativity. 
Regrouping requires associativity. 

These permissions are local. 

Why Rearrangement Matters 

Rearrangement allows structure to reveal itself. 

Terms can be brought together. Factors can be exposed. 

Rearrangement prepares later work. 

Common Misuse 

A common error is rearranging because it looks right. 

Another error is rearranging across operations that do not 
permit it. 

These errors surface later. 

Minimal Example 

a + b + c 

This may be rearranged freely. 

a − b − c 

Here, order and grouping matter. 

Rearrangement as Preparation 

You rearrange so that: 
• like terms touch 



• factors become visible 
• an inverse can be applied cleanly 

Nothing is solved yet. 

Summary of This Permission 

You may rearrange. 

This means: 
• you may change order or grouping when allowed 
• you may reshape expressions without changing value 
• you may prepare structure for later work 

Undo comes next. 



A Negative Example: An Unpermitted Rearrangement 

Consider the expression: 

a − b − c 

A common impulse is to rearrange this expression so that 
similar symbols appear together: 

a − c − b 

This looks harmless. The symbols are the same. The 
operations appear unchanged. 

This rearrangement is not permitted. 



What Went Wrong 

Subtraction does not permit free reordering. 

The original expression is structured as: 

(a − b) − c 

The rearranged expression implies: 

(a − c) − b 

These are not equivalent. 

No permission has been exercised that allows this change. 
No equality was declared. No inverse was applied. 
Rearrangement was assumed where it was not allowed. 



The move felt intuitive. 

It was illegal. 

How the Error Reveals Itself 

Often, errors of this kind are not noticed immediately. 

They surface later, when: 

undo operations fail to isolate a term 

replacement produces inconsistent results 

a final value contradicts earlier constraints 

At that point, the mistake appears distant from its cause. 



This is why algebra insists on permission at each step. 

Correct Handling 

The correct response is restraint. 

If the structure does not permit rearrangement, do not 
rearrange. 

Instead: 

introduce parentheses deliberately 

apply undo operations where inverses exist 

replace only what has been equated 



The expression will change when it is allowed to. 

Instruction 

If a rearrangement feels obvious, pause. 

Ask: 

Which permission allows this move? 

Which operation governs this structure? 

If no permission applies, do not proceed. 



Algebra does not punish intuition. 

It simply does not recognize it as authority. 



Section 6— You May Parse 

 
Parsing is permission to recognize structure. 

Before an expression can be rearranged or undone, it must be 
read correctly. Algebraic expressions are not flat strings of 
symbols. They encode operations applied in a specific order 
and scope. 

Parsing is the act of identifying that structure. 

What Parsing Allows 

Parsing allows you to determine: 
• which operation governs an expression 
• which parts of the expression fall within its scope 
• which operation was applied most recently 

Parsing does not change an expression. 
It makes its structure explicit. 

Structure and Scope 

Every algebraic expression has an outermost operation. 

For example: 
3(x + 2) 

The outermost operation is multiplication. 
The addition occurs within its scope. 

Parentheses indicate scope. 
Absence of parentheses does not imply absence of structure. 

The expression: 
a − b − c 



has structure: 
(a − b) − c 

Parsing identifies this grouping even when it is not written 
explicitly. 

Parsing and Undoing 

Undoing requires recognition of the operation to be reversed. 

In the expression: 
3(x + 2) = 18 

Parsing reveals that multiplication by 3 governs the left-hand 
side. Only after this is recognized does division become a 
permitted undo operation. 

Undoing without parsing is guesswork. 

Parsing and Rearrangement 

Rearrangement depends on which operation governs a 
structure. 

To determine whether reordering or regrouping is allowed, 
you must know which operation applies and which 
subexpressions it binds together. 

Parsing supplies this information. 

What Parsing Does Not Allow 

Parsing does not: 
• suggest which move to make 
• determine goals 
• simplify expressions 



It only identifies structure. 

Common Misuse 

A common error is treating adjacency as structure. 

For example, assuming that: 
3x + 2 

means the same thing as: 
3(x + 2) 

These expressions have different structure. 

Parsing prevents such errors by insisting on scope awareness. 

Minimal Example 

Consider: 
x + 3² 

Parsing identifies exponentiation as governing 3, not the 
sum. 

The structure is: 
x + (3²) 

Undoing addition here is permitted. 
Undoing exponentiation is not. 

Summary of This Permission 

You may parse. 

This means: 
• you may identify the governing operation of an expression 



• you may determine scope and grouping 
• you may recognize which undo operations are applicable 

Parsing makes legality visible. 



Section 7 — You May Undo (when an inverse exists) 

 
Undoing is permission to reverse an operation. 

This permission is conditional. You may only undo what has 
an inverse, and only within the rules of the system you are 
working in. 

What Undoing Allows 

When an operation has an inverse, you may apply it to 
remove the effect of the original operation. 

If an expression has been altered by addition, you may undo 
that alteration by subtraction. 
If it has been altered by multiplication, you may undo it by 
division. 

Undoing restores balance without changing the underlying 
equality. 

Inverses 

An inverse is an operation that returns you to where you 
started. 

Examples: 
• adding 3 is undone by subtracting 3 
• multiplying by 5 is undone by dividing by 5 
• squaring may be undone by taking a square root, under 
certain conditions 



The existence of an inverse is established, not assumed. 

Undoing Acts on Both Sides 

When undoing is applied within an equation, it must be 
applied symmetrically. 

Undoing preserves equality. 

Why Undoing Matters 

Undoing allows expressions to be simplified and variables to 
be isolated. 

Undoing clears structure so that replacement can proceed. 

Conditions on Undoing 

Undoing is allowed only when: 
• the inverse exists 
• the inverse is applied consistently 
• no forbidden operation is introduced 

Violating these conditions removes you from the system. 

Common Misuse 

A common error is undoing operations that were never 
applied. 

Another error is undoing partially. 

Undoing must correspond exactly to what was done. 

Minimal Example 

x + 3 = 7 



Subtract 3 from both sides: 

x = 4 

One operation was reversed. 

Undoing and Restraint 

Undoing is powerful and therefore limited. 

Proceed one operation at a time. 

Summary of This Permission 

You may undo. 

This means: 
• you may reverse an operation when an inverse exists 
• you must apply the inverse consistently 
• you may simplify structure without breaking equality 

Undoing clears the path. 



Section 8 — You May Repeat 

 
Repetition is permission to apply the same lawful move 
again. 

Algebra assumes this permission from the start. Without it, 
structure could not accumulate. 

What Repetition Allows 

When a move is allowed once, it may be allowed again. 

If you may: 
• replace equals with equals 
• combine expressions 
• rearrange under permitted operations 
• undo using an inverse 

then you may do so repeatedly, as long as each step remains 
valid. 

Repetition Is Not Redundancy 

Repeating a step is not a failure to progress. 

Often, the same operation must be applied multiple times to 
different parts of an expression. 

Progress in algebra is usually iterative. 

Why Repetition Matters 

Repetition allows small moves to accumulate into large 
changes. 

This is how algebra scales without adding new rules. 



Termination Is Optional 

Algebra does not require you to stop. 

You may repeat until: 
• the expression reaches a desired form 
• no further permitted moves apply 
• you choose to stop 

Completion is contextual. 

Common Misuse 

A common error is repeating without checking whether the 
move still applies. 

Another is repeating after the structure has stabilized. 

Minimal Example 

x + 3 + 2 = 9 

Subtract 2 from both sides: 
x + 3 = 7 

Subtract 3 from both sides: 
x = 4 

The same permission was used twice. 

Repetition and Discipline 

Repetition rewards patience. 

The permission to repeat allows you to slow down without 
penalty. 



Summary of This Permission 

You may repeat. 

This means: 
• you may apply valid moves more than once 
• you may proceed step by step 
• you may let structure emerge gradually 

Repetition turns permission into process. 



What Remains When the Formulas Are Gone 

 
When the formulas are set aside, algebra remains intact. 

This is because formulas are not the system. They are 
temporary arrangements produced by the use of permissions. 
When the work ends, the permissions do not disappear. 

This manual has described algebra as a sequence of allowed 
actions. Nothing more is required. 

What You Have, Now 

You have permission to: 

• name   

• equate   

• parse   

• replace   

• combine   

• rearrange (when allowed)   

• undo (when an inverse exists)   

• repeatWith these, any algebraic structure can be rebuilt. 



You do not need to remember procedures. 
You do not need to recognize familiar forms. 
You do not need to move quickly. 

You only need to know what is allowed next. 

Why This Is Sufficient 

Algebra does not depend on cleverness. 
It depends on legality. 

Every correct algebraic transformation is an application of 
one of the permissions listed here. 

Mistakes are procedural, not personal. 

On Solving 

Solving is not a special operation. 

It is the point at which no further undo, replacement, or 
rearrangement is required for the current purpose. 

Algebra does not announce completion. 
The user decides when to stop. 

On Difficulty 

If algebra feels difficult, it is usually because: 
• too many permissions are being exercised at once 
• an operation is being undone without an inverse 
• rearrangement is being assumed where it is not allowed 

The remedy is slowing down. 

Return to the last permitted step. 



On Use 

Algebra travels well. 

The same permissions apply whether the symbols stand for 
numbers, functions, vectors, matrices, or abstract elements. 

The objects change. 
The rules do not. 

Final Note to the Reader 

You are not required to like algebra. 
You are not required to be fast. 

You are required to remain within the permissions. 

If you do, algebra will hold. 
If you leave them, it will not. 

That is the whole system. 



The Permissions of Algebra 

A finite set of permissions generates an infinite space of 
valid expressions. 

 
Read vertically. Proceed one permission at a time. 
If no permission applies, stop. 

Permission What It Allows

You May Name Introduce a symbol to hold a place.

You May Equate Declare two expressions the same.

You May Parse
Identify the governing operation, 
scope, and structure of an 
expression.

You May Replace Substitute equals for equals within 
the same structure.

You May Combine Join expressions using agreed 
operations.

You May Rearrange 
(when allowed)

Change order or grouping when the 
governing operation permits it.

You May Undo 
(when an inverse 
exists)

Reverse a parsed operation 
symmetrically.

You May Repeat Apply any permitted move again.



On Strategy 

This manual describes what moves are valid, not which 
move to make. 

It is a grammar of manipulation, not a logic of problem-
solving. 

This is intentional. 

Algebraic strategy—deciding which permission to apply at a 
given moment—depends on context, purpose, and desired 
form. Those factors lie outside the algebraic system itself. 
They belong to the user. 

Algebra guarantees legality, not direction. 



Why This Distinction Matters 

Many failures in algebra arise from confusing these layers: 

legality is mistaken for cleverness 

strategy is mistaken for rule 

intuition is mistaken for permission 

This manual isolates the first layer so the others can be 
learned without confusion. 

You cannot choose well among moves you do not yet 
recognize as lawful. 



What This Manual Provides 

This manual provides: 

a complete account of permitted transformations 

a way to audit each step for validity 

a method for diagnosing error after the fact 

It does not provide: 

heuristics 

tactics 

shortcuts 

problem templates 

Those belong to instruction, practice, and experience. 





Appendix A: Annotated Examples 

This appendix provides fully annotated walkthroughs of 
common algebraic tasks using only the permissions from the 
manual. Each step explicitly names the permission(s) 
applied, with rationale. Annotations appear in bold italics for 
clarity. These examples demonstrate how the finite 
permissions generate standard procedures without relying on 
memorized formulas. 

Example A1: Solving a Linear Equation (x + 5 = 12) 

Start: x + 5 = 12 

1.  Parse the left side: outermost operation is addition (5 
added to x). 
Parsing identifies the governing operation for future undoing. 

2.  Undo addition of 5 by subtracting 5 from both sides 
(inverse exists for addition). 
x + 5 − 5 = 12 − 5 
Undoing preserves equality and is applied symmetrically. 

3.  Combine on left (x + 0) and on right (constants). 
x = 7 
Combination forms simpler compound expressions; here it 
reveals identity elements implicitly. 

No further permitted moves toward isolation apply. Solved. 

Example A2: Solving with Multiple Steps (3x − 4 = 11) 

Start: 3x − 4 = 11 



1.  Parse: left side has subtraction as outermost on the 
compound (3x − 4); within, multiplication governs x. 

2.  Undo subtraction of 4 by adding 4 to both sides. 
3x − 4 + 4 = 11 + 4 
3x = 15 
Undoing clears the outer operation first. 

3.  Parse again: now multiplication by 3 governs x. 

4.  Undo multiplication by 3 by dividing both sides by 3. 
3x / 3 = 15 / 3 
x = 5 
Inverse of multiplication is division (non-zero divisor). 

5.  Combine simplifies both sides. 

Solved. 

Example A3: Combining Like Terms and Solving (2x + 3x − 
7 = 13) 

Start: 2x + 3x − 7 = 13 

1.  Parse: addition and subtraction chain; structure is ((2x + 
3x) − 7). 

2.  Rearrange (addition is commutative and associative): 
regroup like terms. 
(2x + 3x) − 7 = 13 
Rearrangement allowed because addition permits reordering 
and regrouping. 

3.  Combine coefficients of like terms (agreement on 
multiplication/distribution implicit). 
5x − 7 = 13 



4.  Undo subtraction of 7 by adding 7 to both sides. 
5x = 20 

5.  Undo multiplication by 5 by dividing both sides by 5. 
x = 4 

Solved. 

Example A4: Distributive Property Emergent (2(x + 3) = 10) 

Start: 2(x + 3) = 10 

1.  Parse: outermost is multiplication by 2; within 
parentheses, addition. 

2.  Option A – Undo multiplication first: 
Undo multiplication by 2 (divide both sides by 2). 
x + 3 = 5 
Then undo addition: x = 2 
Option B – Expand first (alternative path): 
Combine via distribution (multiplication over addition is 
agreed operation). 
2x + 6 = 10 
Then proceed as in previous examples: subtract 6, divide by 
2 → x = 2 

Both paths valid; permissions allow choice of order when 
multiple moves possible. 

Example A5: Quadratic (Illustrating Limits) (x² = 9) 

Start: x² = 9 

1.  Parse: exponentiation (squaring). 

2.  Undo squaring by square root (inverse exists, but 
conditional on domain). 



x = √±9 
x = ±3 
Note: inverse is not single-valued over reals; permission 
requires acknowledging both branches or context restriction. 

Appendix B: Flowcharts Mapping Permissions to Common 
Problems 

Below are textual representations of flowcharts (decision 
trees) that map the eight permissions to typical algebraic 
tasks. These can be used as diagnostic or planning tools: start 
from an expression and follow branches based on “What is 
allowed next?” 

Flowchart B1: General Strategy for Isolating a VariableStart: 
Equation with target variable 

│ 

├── Parse: Identify outermost operation governing target 

│   ├── Addition/Subtraction? → Undo by opposite (add/
subtract same to both sides) → Repeat/Parse again 

│   ├── Multiplication/Division? → Undo by inverse 
(multiply/divide both sides) → Repeat/Parse again 

│   ├── Exponentiation? → Undo by root (conditional) or 
log → Specify domain 



│   └── Other (e.g., function)? → Apply agreed inverse if 
exists 

│ 

├── Like terms present? → Rearrange (if commutative/
associative) → Combine coefficients 

│ 

├── Parentheses with distributable factor? → Combine via 
distribution 

│ 

└── Target isolated? → Yes: Stop | No: Return to Parse 

Flowchart B2: Simplifying Expressions (No Equation)Start: 
Expression to simplify 

│ 

├── Parse: Identify structure/scope 

│ 

├── Like terms? → Rearrange (if allowed) → Combine 

│ 

├── Distributable factors? → Combine over parentheses 

│ 



├── Redundant operations (e.g., +0, ×1)? → Undo/Replace 
with identity 

│ 

└── No further moves? → Stop (form is canonical for 
current permissions) 

Start: Expression to simplify 

│ 

├── Parse: Identify structure/scope 

│ 

├── Like terms? → Rearrange (if allowed) → Combine 

│ 

├── Distributable factors? → Combine over parentheses 

│ 

├── Redundant operations (e.g., +0, ×1)? → Undo/Replace 
with identity 

│ 

└── No further moves? → Stop (form is canonical for 
current permissions) 

Flowchart B3: Verifying or Debugging a Step 

Suspected error in work 



│ 

├── Check last move against permissions: 

    ├── Was it Naming? (only introduces symbol) → Valid if 
no premature value 

    ├── Equating? → Both sides same system? → Yes/No 

    ├── Replacement? → Only equals for equals? → Yes/No 

    ├── Combination? → Agreed operation? → Yes/No 

    ├── Rearrangement? → Commutative/associative 
allowed? → Yes/No 

    ├── Parsing? → Correct scope identified? → Yes/No 

    ├── Undoing? → Inverse exists and applied 
symmetrically? → Yes/No 

    └── Repeating? → Previous move still valid? → Yes/No 

│ 

└── Invalid? → Revert to last legal step → Restart from 
there 


